Q:

Let A, B and C be sets. Prove that A ∪ (B \ C) = (A ∪ B) \ (C \ A).Please prove in full grammatical sentences.

Accepted Solution

A:
Answer:A ∪ (B \ C) = (A ∪ B) \ (C \ A).Step-by-step explanation:Set B \ C represents the set of all elements of B except the element of C. It means B \ C = B - C.Let A, B and C be sets.To prove: A∪(B\C) = (A∪B) \ (C\A).Proof :First we need to prove that A ∪ (B\C)  ⊆ (A∪B) \ (C\A). Let x∈A∪(B\C) , then x∈A or x∈(B\C) . Case 1: If x∈A, thenx∈A then x ∉ C\A and  x∈A then  x∈A∪B Since x∈A∪B but  x∉C\A, therefore x∈(A∪B) \ (C\A). Case 2: If x∈B\C , thenIf x∈B\C then x∈B but x ∉ C x∈B then x∈A∪B and x ∉ C then  x ∉ C\A Since x∈A ∪ B but x ∉ C\A , therefore x∈(A∪B) \ (C\A). From case 1 and case 2 we can say that  x∈ (A ∪ B) \ (C \ A).  So,A ∪ (B \ C)  ⊆ (A ∪ B) \ (C \ A).                        ..... (1)Now we need to prove that (A ∪ B) \ (C \ A). ⊆  A ∪ (B \ C) Let x∈(A ∪ B) \ (C \ A) , then   x∈A ∪ B but  x∉C\A x∈ A∪B then x∈ A or x∈ B Case 1: If x∈ A If x∈A then  x∈A∪(B \ C) Case 2: If x∈ BSuppose that x ∉ A and x∈ C, then since  x ∉ A we have that  x ∈ C\A, a contradiction.  Therefore  x ∉ C. Since  x∈ B and  x ∉ C. then  x ∈ B\C, hence  x∈ A ∪ (B \ C) ​​​​​​​ From case 1 and case 2 we can say that x∈ A ∪ (B \ C)​​​​​​​ . So, (A ∪ B) \ (C \ A). ⊆  A ∪ (B \ C)                       .... (2)Using (1) and (2) we getA ∪ (B \ C) = (A ∪ B) \ (C \ A).Hence proved.